Advertisement
Review Article| Volume 53, ISSUE 4, P461-472, October 2022

The Insidious Effects of Childhood Obesity on Orthopedic Injuries and Deformities

Published:September 13, 2022DOI:https://doi.org/10.1016/j.ocl.2022.06.008

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Orthopedic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Onis M.
        • Blössner M.
        • Borghi E.
        Global prevalence and trends of overweight and obesity among preschool children.
        Am J Clin Nutr. 2010; 92: 1257-1264
        • Ogden C.L.
        • Carroll M.D.
        • Kit B.K.
        • et al.
        Prevalence of obesity and trends in body mass index among US children and adolescents, 1999-2010.
        JAMA. 2012; 307: 483-490
      1. Ogden C, Carroll M, for Disease Control C, Prevention, Others. NCHS Health EStat: Prevalence of obesity among children and adolescents: United States, Trends 1963-1965 Through 2007-2008. 2010. Available at: https://www.cdc.gov/nchs/products/hestats.htm.

        • Nowicki P.
        • Kemppainen J.
        • Maskill L.
        • et al.
        The Role of Obesity in Pediatric Orthopedics.
        J Am Acad Orthop Surg Glob Res Rev. 2019; 3: e036
        • Kelley J.C.
        • Crabtree N.
        • Zemel B.S.
        Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges.
        Calcif Tissue Int. 2017; 100: 514-527
        • da Silva V.N.
        • Fiorelli L.N.M.
        • da Silva C.C.
        • et al.
        Do metabolic syndrome and its components have an impact on bone mineral density in adolescents?.
        Nutr Metab. 2017; 14: 1
        • Chan G.
        • Chen C.T.
        Musculoskeletal effects of obesity.
        Curr Opin Pediatr. 2009; 21: 65-70
        • Golden N.H.
        • Abrams S.A.
        • Committee on Nutrition
        Optimizing bone health in children and adolescents.
        Pediatrics. 2014; 134: e1229-e1243
        • Pollock N.K.
        Childhood obesity, bone development, and cardiometabolic risk factors.
        Mol Cell Endocrinol. 2015; 410: 52-63
        • Leonard M.B.
        • Shults J.
        • Wilson B.A.
        • et al.
        Obesity during childhood and adolescence augments bone mass and bone dimensions.
        Am J Clin Nutr. 2004; 80: 514-523
        • Bialo S.R.
        • Gordon C.M.
        Underweight, overweight, and pediatric bone fragility: impact and management.
        Curr Osteoporos Rep. 2014; 12: 319-328
        • Lazar-Antman M.A.
        • Leet A.I.
        Effects of obesity on pediatric fracture care and management.
        J Bone Joint Surg Am. 2012; 94: 855-861
        • Turer C.B.
        • Lin H.
        • Flores G.
        Prevalence of vitamin D deficiency among overweight and obese US children.
        Pediatrics. 2013; 131: e152-e161
        • Fintini D.
        • Cianfarani S.
        • Cofini M.
        • et al.
        The Bones of Children With Obesity.
        Front Endocrinol. 2020; 11: 200
        • Huang S.
        • Kaw M.
        • Harris M.T.
        • et al.
        Decreased osteoclastogenesis and high bone mass in mice with impaired insulin clearance due to liver-specific inactivation to CEACAM1.
        Bone. 2010; 46: 1138-1145
        • da Silva S.V.
        • Renovato-Martins M.
        • Ribeiro-Pereira C.
        • et al.
        Obesity modifies bone marrow microenvironment and directs bone marrow mesenchymal cells to adipogenesis.
        Obes. 2016; 24: 2522-2532
        • Roy B.
        • Curtis M.E.
        • Fears L.S.
        • et al.
        Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy.
        Front Physiol. 2016; 7: 439
        • Riches P.L.
        • McRorie E.
        • Fraser W.D.
        • et al.
        Osteoporosis associated with neutralizing autoantibodies against osteoprotegerin.
        N Engl J Med. 2009; 361: 1459-1465
        • Souza P.P.C.
        • Lerner U.H.
        The role of cytokines in inflammatory bone loss.
        Immunol Invest. 2013; 42: 555-622
        • Halverson S.J.
        • Warhoover T.
        • Mencio G.A.
        • et al.
        Leptin Elevation as a Risk Factor for Slipped Capital Femoral Epiphysis Independent of Obesity Status.
        J Bone Joint Surg Am. 2017; 99: 865-872
        • Friedman J.M.
        • Halaas J.L.
        Leptin and the regulation of body weight in mammals.
        Nature. 1998; 395: 763-770
        • Maor G.
        • Rochwerger M.
        • Segev Y.
        • et al.
        Leptin acts as a growth factor on the chondrocytes of skeletal growth centers.
        J Bone Miner Res. 2002; 17: 1034-1043
        • Myers Jr., M.G.
        • Leibel R.L.
        • Seeley R.J.
        • et al.
        Obesity and leptin resistance: distinguishing cause from effect.
        Trends Endocrinol Metab. 2010; 21: 643-651
        • Beck J.J.
        • Mahan S.T.
        • Nowicki P.
        • et al.
        What Is New in Pediatric Bone Health.
        J Pediatr Orthop. 2021; 41: e594-e599
        • Farr J.N.
        • Dimitri P.
        The Impact of Fat and Obesity on Bone Microarchitecture and Strength in Children.
        Calcif Tissue Int. 2017; 100: 500-513
        • Lamghari M.
        • Tavares L.
        • Camboa N.
        • et al.
        Leptin effect on RANKL and OPG expression in MC3T3-E1 osteoblasts.
        J Cell Biochem. 2006; 98: 1123-1129
        • Dimitri P.
        • Jacques R.M.
        • Paggiosi M.
        • et al.
        Leptin may play a role in bone microstructural alterations in obese children.
        J Clin Endocrinol Metab. 2015; 100: 594-602
        • Fujita Y.
        • Watanabe K.
        • Maki K.
        Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice.
        J Musculoskelet Neuronal Interact. 2012; 12 (Available at:): 84-94
        • Tsaknakis K.
        • Braunschweig L.
        • Lorenz H.M.
        • et al.
        [Claims and realities of brace treatment : Primary correction of scoliosis in children and adolescents].
        Orthopade. 2020; 49: 59-65
        • O’Neill P.J.
        • Karol L.A.
        • Shindle M.K.
        • et al.
        Decreased orthotic effectiveness in overweight patients with adolescent idiopathic scoliosis.
        J Bone Joint Surg Am. 2005; 87: 1069-1074
        • Karol L.A.
        • Wingfield J.J.
        • Virostek D.
        • et al.
        The Influence of Body Habitus on Documented Brace Wear and Progression in Adolescents With Idiopathic Scoliosis.
        J Pediatr Orthop. 2020; 40: e171-e175
        • Hardesty C.K.
        • Poe-Kochert C.
        • Son-Hing J.P.
        • et al.
        Obesity negatively affects spinal surgery in idiopathic scoliosis.
        Clin Orthop Relat Res. 2013; 471: 1230-1235
        • Kendall M.C.
        • Castro Alves L.J.
        Risk Factors for Prolonged Postoperative Opioid Use After Spinal Fusion for Adolescent Idiopathic Scoliosis.
        J Pediatr Orthop. 2019; 39: e729
        • Lee N.J.
        • Fields M.W.
        • Boddapati V.
        • et al.
        The risks, reasons, and costs for 30- and 90-day readmissions after fusion surgery for adolescent idiopathic scoliosis.
        J Neurosurg Spine. 2020; : 1-9https://doi.org/10.3171/2020.6.SPINE20197
        • Minhas S.V.
        • Chow I.
        • Feldman D.S.
        • et al.
        A Predictive Risk Index for 30-day Readmissions Following Surgical Treatment of Pediatric Scoliosis.
        J Pediatr Orthop. 2016; 36: 187-192
        • De la Garza Ramos R.
        • Nakhla J.
        • Nasser R.
        • et al.
        Effect of body mass index on surgical outcomes after posterior spinal fusion for adolescent idiopathic scoliosis.
        Neurosurg Focus. 2017; 43: E5
        • McDonald T.C.
        • Heffernan M.J.
        • Ramo B.
        • et al.
        Surgical Outcomes of Obese Patients With Adolescent Idiopathic Scoliosis From Endemic Areas of Obesity in the United States.
        J Pediatr Orthop. 2021; 41: e865-e870
        • Goodbody C.M.
        • Sankar W.N.
        • Flynn J.M.
        Presentation of Adolescent Idiopathic Scoliosis: The Bigger the Kid, the Bigger the Curve.
        J Pediatr Orthop. 2017; 37: 41-46
        • Lonner B.S.
        • Toombs C.S.
        • Husain Q.M.
        • et al.
        Body Mass Index in Adolescent Spinal Deformity: Comparison of Scheuermann’s Kyphosis, Adolescent Idiopathic Scoliosis, and Normal Controls.
        Spine Deform. 2015; 3: 318-326
        • Valdovino A.G.
        • Bastrom T.P.
        • Reighard F.G.
        • et al.
        Obesity Is Associated With Increased Thoracic Kyphosis in Adolescent Idiopathic Scoliosis Patients and Nonscoliotic Adolescents.
        Spine Deform. 2019; 7: 865-869
        • Sabharwal S.
        Blount disease.
        J Bone Joint Surg Am. 2009; 91: 1758-1776
        • Wills M.
        Orthopedic complications of childhood obesity.
        Pediatr Phys Ther. 2004; 16: 230-235
        • Dietz Jr., W.H.
        • Gross W.L.
        • Kirkpatrick Jr., J.A.
        Blount disease (tibia vara): another skeletal disorder associated with childhood obesity.
        J Pediatr. 1982; 101: 735-737
        • Janoyer M.
        Blount disease.
        Orthop Traumatol Surg Res. 2019; 105: S111-S121
        • Shinohara Y.
        • Kamegaya M.
        • Kuniyoshi K.
        • et al.
        Natural history of infantile tibia vara.
        J Bone Joint Surg Br. 2002; 84: 263-268
        • Robbins C.A.
        Deformity Reconstruction Surgery for Blount’s Disease.
        Children. 2021; 8https://doi.org/10.3390/children8070566
        • Loder R.T.
        • Johnston 2nd, C.E.
        Infantile tibia vara.
        J Pediatr Orthop. 1987; 7: 639-646
        • Jardaly A.
        • McGwin Jr., G.
        • Gilbert S.R.
        Blount Disease and Obstructive Sleep Apnea: An Under-recognized Association?.
        J Pediatr Orthop. 2020; 40: 604-607
        • Sabharwal S.
        Blount disease: an update.
        Orthop Clin North Am. 2015; 46: 37-47
        • Gordon J.E.
        • Hughes M.S.
        • Shepherd K.
        • et al.
        Obstructive sleep apnoea syndrome in morbidly obese children with tibia vara.
        J Bone Joint Surg Br. 2006; 88: 100-103
        • Sabharwal S.
        • Sakamoto S.M.
        • Zhao C.
        Advanced bone age in children with Blount disease: a case-control study.
        J Pediatr Orthop. 2013; 33: 551-557
        • Pfeiffer M.
        • Kotz R.
        • Ledl T.
        • et al.
        Prevalence of flat foot in preschool-aged children.
        Pediatrics. 2006; 118: 634-639
        • Staheli L.T.
        • Chew D.E.
        • Corbett M.
        The longitudinal arch. A survey of eight hundred and eighty-two feet in normal children and adults.
        J Bone Joint Surg Am. 1987; 69 (Available at:): 426-428
        • Malden S.
        • Gillespie J.
        • Hughes A.
        • et al.
        Obesity in young children and its relationship with diagnosis of asthma, vitamin D deficiency, iron deficiency, specific allergies and flat-footedness: A systematic review and meta-analysis.
        Obes Rev. 2021; 22: e13129
        • Chen K.C.
        • Tung L.C.
        • Tung C.H.
        • et al.
        An investigation of the factors affecting flatfoot in children with delayed motor development.
        Res Dev Disabil. 2014; 35: 639-645
        • Neal D.C.
        • Alford T.H.
        • Moualeu A.
        • et al.
        Prevalence of Obesity in Patients With Legg-Calvé-Perthes Disease.
        J Am Acad Orthop Surg. 2016; 24: 660-665
        • Mörlin G.B.
        • Hailer Y.D.
        High blood pressure and overweight in children with Legg-Calvé-Perthes disease: a nationwide population-based cohort study.
        BMC Musculoskelet Disord. 2021; 22: 32
        • Lee J.H.
        • Zhou L.
        • Kwon K.S.
        • et al.
        Role of leptin in Legg-Calvé-Perthes disease.
        J Orthop Res. 2013; 31: 1605-1610
        • Perry D.C.
        • Metcalfe D.
        • Lane S.
        • et al.
        Childhood Obesity and Slipped Capital Femoral Epiphysis.
        Pediatrics. 2018; 142https://doi.org/10.1542/peds.2018-1067
        • Hailer Y.D.
        Fate of patients with slipped capital femoral epiphysis (SCFE) in later life: risk of obesity, hypothyroidism, and death in 2,564 patients with SCFE compared with 25,638 controls.
        Acta Orthop. 2020; 91: 457-463
        • Montañez-Alvarez M.
        • Flores-Navarro H.H.
        • Cuevas-De Alba C.
        • et al.
        The Role of Hyperinsulinemia in Slipped Capital Femoral Epiphysis.
        J Pediatr Orthop. 2020; 40: 413-417
        • Lee R.J.
        • Hsu N.N.
        • Lenz C.M.
        • et al.
        Does obesity affect fracture healing in children?.
        Clin Orthop Relat Res. 2013; 471: 1208-1213
        • Taylor E.D.
        • Theim K.R.
        • Mirch M.C.
        • et al.
        Orthopedic complications of overweight in children and adolescents.
        Pediatrics. 2006; 117: 2167-2174
        • Valerio G.
        • Gallè F.
        • Mancusi C.
        • et al.
        Prevalence of overweight in children with bone fractures: a case control study.
        BMC Pediatr. 2012; 12: 166
        • Pomerantz W.J.
        • Timm N.L.
        • Gittelman M.A.
        Injury patterns in obese versus nonobese children presenting to a pediatric emergency department.
        Pediatrics. 2010; 125: 681-685
        • Kessler J.
        • Koebnick C.
        • Smith N.
        • et al.
        Childhood obesity is associated with increased risk of most lower extremity fractures.
        Clin Orthop Relat Res. 2013; 471: 1199-1207
        • Backstrom I.C.
        • MacLennan P.A.
        • Sawyer J.R.
        • et al.
        Pediatric obesity and traumatic lower-extremity long-bone fracture outcomes.
        J Trauma Acute Care Surg. 2012; 73: 966-971
        • Seeley M.A.
        • Gagnier J.J.
        • Srinivasan R.C.
        • et al.
        Obesity and its effects on pediatric supracondylar humeral fractures.
        J Bone Joint Surg Am. 2014; 96: e18
        • Fornari E.D.
        • Suszter M.
        • Roocroft J.
        • et al.
        Childhood obesity as a risk factor for lateral condyle fractures over supracondylar humerus fractures.
        Clin Orthop Relat Res. 2013; 471: 1193-1198
        • Chang C.H.
        • Kao H.K.
        • Lee W.C.
        • et al.
        Influence of obesity on surgical outcomes in type III paediatric supracondylar humeral fractures.
        Injury. 2015; 46: 2181-2184
        • Li N.Y.
        • Bruce W.J.
        • Joyce C.
        • et al.
        Obesity’s Influence on Operative Management of Pediatric Supracondylar Humerus Fractures.
        J Pediatr Orthop. 2018; 38: e118-e121
        • DeFrancesco C.J.
        • Rogers B.H.
        • Shah A.S.
        Obesity Increases Risk of Loss of Reduction After Casting for Diaphyseal Fractures of the Radius and Ulna in Children: An Observational Cohort Study.
        J Orthop Trauma. 2018; 32: e46-e51
        • Okoroafor U.C.
        • Cannada L.K.
        • McGinty J.L.
        Obesity and Failure of Nonsurgical Management of Pediatric Both-Bone Forearm Fractures.
        J Hand Surg Am. 2017; 42: 711-716
        • Gilbert S.R.
        • MacLennan P.A.
        • Backstrom I.
        • et al.
        Altered lower extremity fracture characteristics in obese pediatric trauma patients.
        J Orthop Trauma. 2015; 29: e12-e17
        • Gettys F.K.
        • Jackson J.B.
        • Frick S.L.
        Obesity in pediatric orthopaedics.
        Orthop Clin North Am. 2011; 42 (vii): 95-105
        • Leet A.I.
        • Pichard C.P.
        • Ain M.C.
        Surgical treatment of femoral fractures in obese children: does excessive body weight increase the rate of complications?.
        J Bone Joint Surg Am. 2005; 87: 2609-2613
        • Weiss J.M.
        • Choi P.
        • Ghatan C.
        • et al.
        Complications with flexible nailing of femur fractures more than double with child obesity and weight >50 kg.
        J Child Orthop. 2009; 3: 53-58
        • Li Y.
        • Stabile K.J.
        • Shilt J.S.
        Biomechanical analysis of titanium elastic nail fixation in a pediatric femur fracture model.
        J Pediatr Orthop. 2008; 28: 874-878
        • Moroz L.A.
        • Launay F.
        • Kocher M.S.
        • et al.
        Titanium elastic nailing of fractures of the femur in children. Predictors of complications and poor outcome.
        J Bone Joint Surg Br. 2006; 88: 1361-1366
        • Basques B.A.
        • Lukasiewicz A.M.
        • Samuel A.M.
        • et al.
        Which Pediatric Orthopaedic Procedures Have the Greatest Risk of Adverse Outcomes?.
        J Pediatr Orthop. 2017; 37: 429-434
        • Goodbody C.M.
        • Lee R.J.
        • Flynn J.M.
        • et al.
        Titanium Elastic Nailing for Pediatric Tibia Fractures: Do Older, Heavier Kids Do Worse?.
        J Pediatr Orthop. 2016; 36: 472-477
        • Confroy K.
        • Miles C.
        • Kaplan S.
        • et al.
        Pediatric Obesity and Sports Medicine: A Narrative Review and Clinical Recommendations.
        Clin J Sport Med. 2021; 31: e484-e498
        • Bazelmans C.
        • Coppieters Y.
        • Godin I.
        • et al.
        Is obesity associated with injuries among young people?.
        Eur J Epidemiol. 2004; 19: 1037-1042
        • Briggs M.S.
        • Bout-Tabaku S.
        • McNally M.P.
        • et al.
        Relationships Between Standing Frontal-Plane Knee Alignment and Dynamic Knee Joint Loading During Walking and Jogging in Youth Who Are Obese.
        Phys Ther. 2017; 97: 571-580
        • Kim N.
        • Browning R.C.
        • Lerner Z.F.
        The effects of pediatric obesity on patellofemoral joint contact force during walking.
        Gait Posture. 2019; 73: 209-214
        • McGraw B.
        • McClenaghan B.A.
        • Williams H.G.
        • et al.
        Gait and postural stability in obese and nonobese prepubertal boys.
        Arch Phys Med Rehabil. 2000; 81: 484-489
        • Deforche B.I.
        • Hills A.P.
        • Worringham C.J.
        • et al.
        Balance and postural skills in normal-weight and overweight prepubertal boys.
        Int J Pediatr Obes. 2009; 4: 175-182
        • Tropp H.
        • Ekstrand J.
        • Gillquist J.
        Stabilometry in functional instability of the ankle and its value in predicting injury.
        Med Sci Sports Exerc. 1984; 16 (Available at:): 64-66
        • McGuine T.A.
        • Greene J.J.
        • Best T.
        • et al.
        Balance as a predictor of ankle injuries in high school basketball players.
        Clin J Sport Med. 2000; 10: 239-244
        • Krul M.
        • van der Wouden J.C.
        • Schellevis F.G.
        • et al.
        Musculoskeletal problems in overweight and obese children.
        Ann Fam Med. 2009; 7: 352-356
        • Zonfrillo M.R.
        • Seiden J.A.
        • House E.M.
        • et al.
        The association of overweight and ankle injuries in children.
        Ambul Pediatr. 2008; 8: 66-69
        • Timm N.L.
        • Grupp-Phelan J.
        • Ho M.L.
        Chronic ankle morbidity in obese children following an acute ankle injury.
        Arch Pediatr Adolesc Med. 2005; 159: 33-36
        • Kaplan T.A.
        • Digel S.L.
        • Scavo V.A.
        • et al.
        Effect of obesity on injury risk in high school football players.
        Clin J Sport Med. 1995; 5: 43-47
        • Gómez J.E.
        • Ross S.K.
        • Calmbach W.L.
        • et al.
        Body fatness and increased injury rates in high school football linemen.
        Clin J Sport Med. 1998; 8: 115-120
        • McHugh M.P.
        Oversized young athletes: a weighty concern.
        Br J Sports Med. 2010; 44: 45-49
        • Kessler J.I.
        • Jacobs Jr., J.C.
        • Cannamela P.C.
        • et al.
        Childhood Obesity is Associated With Osteochondritis Dissecans of the Knee, Ankle, and Elbow in Children and Adolescents.
        J Pediatr Orthop. 2018; 38: e296-e299
        • Jones G.
        • Ding C.
        • Glisson M.
        • et al.
        Knee articular cartilage development in children: a longitudinal study of the effect of sex, growth, body composition, and physical activity.
        Pediatr Res. 2003; 54: 230-236
        • Vavken P.
        • Tepolt F.A.
        • Kocher M.S.
        Concurrent Meniscal and Chondral Injuries in Pediatric and Adolescent Patients Undergoing ACL Reconstruction.
        J Pediatr Orthop. 2018; 38: 105-109
        • Patel N.M.
        • Talathi N.S.
        • Bram J.T.
        • et al.
        How Does Obesity Impact Pediatric Anterior Cruciate Ligament Reconstruction?.
        Arthroscopy. 2019; 35: 130-135
        • MacAlpine E.M.
        • Talwar D.
        • Storey E.P.
        • et al.
        Weight Gain After ACL Reconstruction in Pediatric and Adolescent Patients.
        Sports Health. 2020; 12: 29-35
        • Newman J.T.
        • Carry P.M.
        • Terhune E.B.
        • et al.
        Factors predictive of concomitant injuries among children and adolescents undergoing anterior cruciate ligament surgery.
        Am J Sports Med. 2015; 43: 282-288
        • Dumont G.D.
        • Hogue G.D.
        • Padalecki J.R.
        • et al.
        Meniscal and chondral injuries associated with pediatric anterior cruciate ligament tears: relationship of treatment time and patient-specific factors.
        Am J Sports Med. 2012; 40: 2128-2133
        • Perkins C.A.
        • Christino M.A.
        • Busch M.T.
        • et al.
        Rates of Concomitant Meniscal Tears in Pediatric Patients With Anterior Cruciate Ligament Injuries Increase With Age and Body Mass Index.
        Orthop J Sports Med. 2021; 9 (2325967120986565)
        • Raad M.
        • Thevenin Lemoine C.
        • Bérard E.
        • et al.
        Delayed reconstruction and high BMI z score increase the risk of meniscal tear in paediatric and adolescent anterior cruciate ligament injury.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 905-911
        • Shieh A.
        • Bastrom T.
        • Roocroft J.
        • et al.
        Meniscus tear patterns in relation to skeletal immaturity: children versus adolescents.
        Am J Sports Med. 2013; 41: 2779-2783