Review Article| Volume 54, ISSUE 2, P169-192, April 2023

Download started.


Predicting Corrosion Damage in the Human Body Using Artificial Intelligence

In Vitro Progress and Future Applications
Published:January 31, 2023DOI:


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Orthopedic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Jamaludin A.
        • Lootus M.
        • Kadir T.
        • et al.
        ISSLS PRIZE IN BIOENGINEERING SCIENCE 2017: automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist.
        Eur Spine J. 2017; 26: 1374-1383
        • Xue Y.
        • Zhang R.
        • Deng Y.
        • et al.
        A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis.
        PloS one. 2017; 12: e0178992
        • Han X.-G.
        • Tian W.
        Artificial intelligence in orthopedic surgery: current state and future perspective.
        Chin Med J. 2019; 132: 2521-2523
        • Cabitza F.
        • Locoro A.
        • Banfi G.
        Machine learning in orthopedics: a literature review.
        Front Bioeng Biotechnol. 2018; 6: 75
        • Helm J.M.
        • Swiergosz A.M.
        • Haeberle H.S.
        • et al.
        Machine learning and artificial intelligence: definitions, applications, and future directions.
        Curr Rev Musculoskelet Med. 2020; 13: 69-76
        • White S.E.
        A review of big data in health care: challenges and opportunities.
        Open access bioinformatics. 2014; 6: 13
        • Atherton J.
        Development of the electronic health record.
        Virtual mentor. 2011; 13: 186-189
        • Bell B.
        • Thornton K.
        From promise to reality: achieving the value of an EHR: realizing the benefits of an EHR requires specific steps to establish goals, involve physicians and other key stakeholders, improve processes, and manage organizational change.
        Healthc financial Manag. 2011; 65: 51
        • Suh K.S.
        • Sarojini S.
        • Youssif M.
        • et al.
        Tissue banking, bioinformatics, and electronic medical records: the front-end requirements for personalized medicine.
        J Oncol. 2013; 2013: 368712-368757
        • Gauthier J.
        • Vincent A.T.
        • Charette S.J.
        • et al.
        A brief history of bioinformatics.
        Brief Bioinformatics. 2019; 20: 1981-1996
        • Luscombe N.M.
        • Greenbaum D.
        • Gerstein M.
        What is Bioinformatics? A Proposed Definition and Overview of the Field.
        Methods Inf Med. 2001; 40: 346-358
        • Kulikowski C.A.
        • Shortliffe E.H.
        • Currie L.M.
        • et al.
        AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline.
        J Am Med Inform Assoc : JAMIA. 2012; 19: 931-938
        • Friedman C.P.
        A "fundamental theorem" of biomedical informatics.
        J Am Med Inform Assoc : JAMIA. 2009; 16: 169-170
        • Gowd A.K.
        • Agarwalla A.
        • Amin N.H.
        • et al.
        Construct validation of machine learning in the prediction of short-term postoperative complications following total shoulder arthroplasty.
        J Shoulder Elbow Surg. 2019; 28: e410-e421
        • Tajmir S.H.
        • Lee H.
        • Shailam R.
        • et al.
        Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability.
        Skeletal Radiol. 2018; 48: 275-283
        • Cabitza F.
        • Locoro A.
        • Banfi G.
        Machine Learning in Orthopedics: A Literature Review.
        Front Bioeng Biotechnol. 2018; 6
        • Kunze K.N.
        • Krivicich L.M.
        • Clapp I.M.
        • et al.
        Machine learning algorithms predict achievement of clinically significant outcomes after orthopaedic surgery: a systematic review.
        Arthroscopy. 2022; 38: 2090-2105
        • Lalehzarian S.P.
        • Gowd A.K.
        • Liu J.N.
        Machine learning in orthopaedic surgery.
        World J Orthopedics. 2021; 12: 685-699
        • Myers T.G.
        • Ramkumar P.N.
        • Ricciardi B.F.
        • et al.
        Artificial Intelligence and Orthopaedics: An Introduction for Clinicians.
        J bone Jt Surg Am volume. 2020; 102: 830-840
        • Langton D.J.
        • Bhalekar R.M.
        • Joyce T.J.
        • et al.
        The influence of HLA genotype on the development of metal hypersensitivity following joint replacement.
        Commun Med. 2022; 2: 73
        • Mathew M T.
        • Pai P.S.
        • Pourzal R.
        • et al.
        Significance of tribocorrosion in biomedical applications: overview and current status.
        Adv Tribology. 2009; 2009: 1-12
        • Carlson J.C.H.
        • Citters D.W.V.
        • Currier J.H.
        • et al.
        Femoral stem fracture and in vivo corrosion of retrieved modular femoral hips.
        J arthroplasty. 2012; 27 (e1381): 1389-1396
        • Collier J.P.
        • Surprenant V.A.
        • Jensen R.E.
        • et al.
        Corrosion between the components of modular femoral hip prostheses.
        J bone Jt Surg Br. 1992; 74: 511-517
        • Cook S.D.
        • Barrack R.L.
        • Clemow A.J.T.
        Corrosion and wear at the modular interface of uncemented femoral stems.
        J bone Jt Surg Br volume. 1994; 76: 68-72
        • Gilbert J.L.
        • Buckley C.A.
        • Jacobs J.J.
        In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling.
        J Biomed Mater Res. 1993; 27: 1533-1544
        • Agins H.J.
        • Alcock N.W.
        • Bansal M.
        • et al.
        Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis.
        J Bone And Joint Surg Am Volume. 1988; 70: 347-356
        • John Cooper H.
        • Della Valle C.J.
        • Berger R.A.
        • et al.
        Corrosion at the Head-Neck Taper as a Cause for Adverse Local Tissue Reactions After Total Hip Arthroplasty.
        J Bone And Joint Surg Am Volume. 2012; 94: 1655-1661
        • Rodrigues D.C.
        • Urban R.M.
        • Jacobs J.J.
        • et al.
        In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants.
        J Biomed Mater Res B Appl Biomater. 2009; 88: 206-219
        • Gilbert J.L.
        Corrosion in the Human Body: Metallic Implants in the Complex Body Environment.
        Corrosion. 2017; 73: 1478-1495
        • Navarro M.
        • Michiardi A.
        • Castano O.
        • et al.
        Biomaterials in orthopaedics.
        J R Soc Interf. 2008; 5: 1137-1158
        • Long M.
        • Rack H.J.
        Titanium alloys in total joint replacement—a materials science perspective.
        Biomaterials. 1998; 19: 1621-1639
        • Gilbert J.L.
        • Mali S.
        • Urban R.M.
        • et al.
        In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck–stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion.
        J Biomed Mater Res B: Appl Biomater. 2012; 100: 584-594
        • Goldberg J.R.
        • Gilbert J.L.
        • Jacobs J.J.
        • et al.
        A multicenter retrieval study of the taper interfaces of modular hip prostheses.
        Clin Orthopaedics Relat Research®. 2002; 401: 149-161
        • Hamet P.
        • Tremblay J.
        Artificial intelligence in medicine.
        Metab Clin Exp. 2017; 69: S36-S40
        • Coqueret G.
        Dixon Matthew F. Halperin Igor Paul Bilokon Machine learning in finance: from theory to practice. Vol 21. Springer, Routledge2021: 9-10 (ISBN 978-3-030-41067-4. Paperback. In)
        • Wuest T.
        • Weimer D.
        • Irgens C.
        • et al.
        Machine learning in manufacturing: advantages, challenges, and applications.
        Prod Manufacturing Res. 2016; 4: 23-45
        • Rajkomar A.
        • Dean J.
        • Kohane I.
        Machine Learning in Medicine.
        New Engl J Med. 2019; 380: 1347-1358
        • Michalski R.S.
        • Carbonell J.G.
        • Mitchell T.M.
        Machine learning: an artificial intelligence approach. Springer Science & Business Media, Berlin/Heidelberg, Germany2013
        • Rosenblatt F.
        The perceptron: A probabilistic model for information storage and organization in the brain.
        Psychol Rev. 1958; 65: 386-408
      1. LeCun Y, Touresky D, Hinton G, et al. A theoretical framework for back-propagation. Paper presented at: Proceedings of the 1988 connectionist models summer school, CMU, Pittsburgh, PA,1988.

        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature (London). 2015; 521: 436-444
        • Voulodimos A.
        • Doulamis N.
        • Doulamis A.
        • et al.
        Deep learning for computer vision: a brief review.
        Comput intelligence Neurosci. 2018; 2018: 7068313-7068349
        • Young T.
        • Hazarika D.
        • Poria S.
        • et al.
        Recent trends in deep learning based natural language processing [Review Article].
        IEEE Comput intelligence Mag. 2018; 13: 55-75
        • Jing Y.
        • Bian Y.
        • Hu Z.
        • et al.
        Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data Era.
        AAPS J. 2018; 20: 58
        • Min S.
        • Lee B.
        • Yoon S.
        Deep learning in bioinformatics.
        Brief Bioinformatics. 2017; 18: 851-869
        • Lai Z.
        • Deng H.
        Medical Image Classification Based on Deep Features Extracted by Deep Model and Statistic Feature Fusion with Multilayer Perceptron.
        Comput intelligence Neurosci. 2018; 2018: 2061513-2061516
        • Olczak J.
        • Fahlberg N.
        • Maki A.
        • et al.
        Artificial intelligence for analyzing orthopedic trauma radiographs: Deep learning algorithms-are they on par with humans for diagnosing fractures?.
        Acta orthopaedica. 2017; 88: 581-586
        • Cortes C.
        • Vapnik V.
        Support-vector networks.
        Machine Learn. 1995; 20: 273-297
        • Camlica Z.
        • Tizhoosh H.R.
        • Khalvati F.
        Medical image classification via SVM using LBP features from saliency-based folded data.
        in: 2015 IEEE 14th international conference on machine learning and applications (ICMLA). IEEE, 2015: 128-132
        • Agarwal S.
        • Pandey G.N.
        (2010, December). SVM based context awareness using body area sensor network for pervasive healthcare monitoring. In Proceedings of the First International Conference on Intelligent Interactive Technologies and Multimedia (pp. 271-278). December 27-30.
        Indian Institute of Information Technology, Allahabad, India2010
        • Watanabe T.
        • Kessler D.
        • Scott C.
        • et al.
        Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine.
        NeuroImage (Orlando, Fla). 2014; 96: 183-202
        • Smola A.J.
        • Schölkopf B.
        A tutorial on support vector regression.
        Stat Comput. 2004; 14: 199-222
        • Ben-Hur A.
        • Horn D.
        • Siegelmann H.T.
        • et al.
        A support vector clustering method.
      2. Freund Y, Mason L. The alternating decision tree learning algorithm. Paper presented at: icml, 1999.

        • Jothi N.
        • Rashid N.A.A.
        • Husain W.
        Data Mining in Healthcare – A Review.
        Proced Comput Sci. 2015; 72: 306-313
        • Azar A.T.
        • El-Metwally S.M.
        Decision tree classifiers for automated medical diagnosis.
        Neural Comput Appl. 2012; 23: 2387-2403
        • Rajendran P.
        • Madheswaran M.
        Hybrid medical image classification using association Rule mining with decision tree algorithm.
        Cornell University Library,, Ithaca2010
        • Fan C.-Y.
        • Chang P.-C.
        • Lin J.-J.
        • et al.
        A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification.
        Appl soft Comput. 2011; 11: 632-644
        • Tee J.W.
        • Rivers C.S.
        • Fallah N.
        • et al.
        Decision tree analysis to better control treatment effects in spinal cord injury clinical research.
        J Neurosurg Spine. 2019; 31: 464-472
        • Boutsidis C.
        • Drineas P.
        • Mahoney M.W.
        Unsupervised feature selection for the $ k $-means clustering problem.
        Adv Neural Inf Process Syst. 2009; 22
        • Bottou L.
        • Bengio Y.
        Convergence properties of the k-means algorithms.
        Adv Neural Inf Process Syst. 1994; 7
        • Alsayat A.
        • El-Sayed H.
        Efficient genetic K-Means clustering for health care knowledge discovery.
      3. Luong DTA, Chandola V. A k-means approach to clustering disease progressions. Paper presented 2017 IEEE Int Conf Healthc Inform (Ichi), 2017. August 23 2017 to August 26 2017, Park City, UT, USA

      4. Ng H, Ong S, Foong K, et al. Medical image segmentation using k-means clustering and improved watershed algorithm. Paper presented at: 2006 IEEE southwest symposium on image analysis and interpretation, 2006. 26-28 March 2006, Denver, CO, USA.

        • Li J.
        • Tang S.
        • Zhang H.
        • et al.
        Clustering of morphological fracture lines for identifying intertrochanteric fracture classification with Hausdorff distance–based K-means approach.
        Injury. 2019; 50: 939-949
        • Kop A.M.
        • Keogh C.
        • Swarts E.
        Proximal Component Modularity in THA—At What Cost?: An Implant Retrieval Study.
        Clin orthopaedics Relat Res. 2011; 470: 1885-1894
        • Fraitzl C.R.
        • Moya L.E.
        • Castellani L.
        • et al.
        Corrosion at the Stem-Sleeve Interface of a Modular Titanium Alloy Femoral Component as a Reason for Impaired Disengagement.
        J arthroplasty. 2011; 26 (e111): 113-119
        • Rodrigues D.C.
        • Urban R.M.
        • Jacobs J.J.
        • et al.
        In vivo severe corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip-implants.
        J Biomed Mater Res Part B: Appl Biomater. 2009; 88 (The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials): 206-219
        • Urban R.M.
        • Gilbert J.L.
        • Jacobs J.J.
        Corrosion of Modular Titanium Alloy Stems in Cementless Hip Replacement.
        J ASTM Int. 2005; 2: 1-10
        • Gilbert J.L.
        • Jacobs J.J.
        The Mechanical and Electrochemical Processes Associated with Taper Fretting Crevice Corrosion: A Review.
        in: 100 barr harbor drive, PO box C700. 19428-2959. ASTM International, West Conshohocken, PA1997: 45-59
        • Swaminathan V.
        Fretting crevice corrosion of metallic biomaterials: instrument development and materials analysis.
        ProQuest Dissertations Publishing, Ann Arbor, MI2012
        • Viswanathan Swaminathan L.
        • Gilbert J.
        Fretting corrosion of CoCrMo and Ti6Al4V interfaces.
        Biomaterials. 2012; 33: 5487-5503
        • Mali S.
        Mechanically assisted crevice corrosion in metallic biomaterials: a review.
        Mater Technology. 2016; 31: 732-739
        • Jacobs J.J.
        • Cooper H.J.
        • Urban R.M.
        • et al.
        What Do We Know About Taper Corrosion in Total Hip Arthroplasty?.
        J arthroplasty. 2014; 29: 668-669
        • Eltit F.
        • Wang Q.
        • Wang R.
        Mechanisms of Adverse Local Tissue Reactions to Hip Implants.
        Front Bioeng Biotechnol. 2019; 7: 176
        • Hall D.J.
        • Pourzal R.
        • Jacobs J.J.
        What Surgeons Need to Know About Adverse Local Tissue Reaction in Total Hip Arthroplasty.
        J arthroplasty. 2020; 35: S55-S59
        • Landolt D.
        • Mischler S.
        • Stemp M.
        • et al.
        Third body effects and material fluxes in tribocorrosion systems involving a sliding contact.
        Wear. 2004; 256: 517-524
        • Barril S.
        • Mischler S.
        • Landolt D.
        Influence of fretting regimes on the tribocorrosion behaviour of Ti6Al4V in 0.9wt.% sodium chloride solution.
        Wear. 2004; 256: 963-972
        • Mischler S.
        Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation.
        Tribology Int. 2008; 41: 573-583
        • Hall D.J.
        • Pourzal R.
        • Lundberg H.J.
        • et al.
        Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements.
        J Biomed Mater Res Part B: Appl Biomater. 2018; 106: 1672-1685
        • Kurtz M.A.
        • Khullar P.
        • Gilbert J.L.
        Cathodic activation and inflammatory species are critical to simulating in vivo Ti-6Al-4V selective dissolution.
        Acta Biomater. 2022; 149: 399-409
        • Prestat M.
        • Vucko F.
        • Holzer L.
        • et al.
        Microstructural aspects of Ti6Al4V degradation in H2O2-containing phosphate buffered saline.
        Corrosion Sci. 2021; 190: 109640
      5. Codirenzi AM. Large-scale Analysis and Automated Detection of Trunnion Corrosion on Hip Arthroplasty Devices. 2022.

        • Milimonfared R.
        • Oskouei R.H.
        • Taylor M.
        • et al.
        An intelligent system for image-based rating of corrosion severity at stem taper of retrieved hip replacement implants.
        Med Eng Phys. 2018; 61: 13-24
        • Milimonfared R.
        Development and implementation of an artificial intelligence system for assessing corrosion damage at stem taper of hip replacement implants: a retrieval study. Flinders University, College of Science and Engineering, Adelaide, South Australia2019
        • Fessler R.R.
        Pipeline corrosion. Report.
        US Department of Transportation Pipeline and Hazardous Materials Safety Administration, Baker, Evanston, IL2008
        • Mansoori H.
        • Mirzaee R.
        • Esmaeilzadeh F.
        • et al.
        Pitting corrosion failure analysis of a wet gas pipeline.
        Eng Fail Anal. 2017; 82: 16-25
        • Papavinasam S.
        Corrosion control in the oil and gas industry.
        Elsevier, Boston2014
        • Alamri A.H.
        Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines – An overview.
        Eng Fail Anal. 2020; 116104735
        • Gilbert J.L.
        • Kubacki G.W.
        Oxidative stress, inflammation, and the corrosion of metallic biomaterials: Corrosion causes biology and biology causes corrosion.
        in: Dziubla T. Butterfield D.A. Oxidative stress and biomaterials. Elsevier, Cambridge, MA2016: 59-88
        • FDA U.
        Biological responses to metal implants.
        Food and Drug Administration, Silver spring (MD)2019
        • Jimenez-Come M.J.
        • Turias I.J.
        • Trujillo F.J.
        An automatic pitting corrosion detection approach for 316L stainless steel.
        Mater Des. 2014; 56: 642-648
        • Jimenez-Come M.J.
        • Munoz E.
        • Garcia R.
        • et al.
        Pitting corrosion behaviour of austenitic stainless steel using artificial intelligence techniques.
        J Appl Logic. 2012; 10: 291-297
        • Jimenez-Come M.J.
        • Munoz E.
        • Garcia R.
        • et al.
        Pitting Corrosion Detection of Austenitic Stainless Steel EN 1.4404 in MgCl2 solutions using a Machine Learning Approach.
        Paper presented 4th Manufacturing Eng Soc Int Conf (Mesic). 2012; 2011 (Cadiz, SPAIN): 21-23
        • Wiegand M.J.
        • Benton T.Z.
        • Gilbert J.L.
        A fluorescent approach for detecting and measuring reduction reaction byproducts near cathodically-biased metallic surfaces: Reactive oxygen species production and quantification.
        Bioelectrochemistry. 2019; 129: 235-241
        • Morizet N.
        • Godin N.
        • Tang J.
        • et al.
        Classification of acoustic emission signals using wavelets and Random Forests : Application to localized corrosion.
        Mech Syst Signal Process. 2016; 70-71: 1026-1037
        • Rosen E.M.
        • Silverman D.C.
        Corrosion prediction from polarization scans using an artificial neural network integrated with an expert system.
        Corrosion. 1992; 48: 734-745
        • Wiegand M.J.
        • Shenoy A.A.
        • Littlejohn S.E.
        • et al.
        Sensing Localized Surface Corrosion Damage of CoCrMo Alloys and Modular Tapers of Total Hip Retrievals Using Nearfield Electrochemical Impedance Spectroscopy.
        ACS Biomater Sci Eng. 2020; 6: 1344-1354
      6. Shenoy A. Understanding Corrosion in Modular Acetabular Tapers: Retrieval Analysis, In Vitro Testing and Cell-Material Interactions, Clemson University Libraries.

      7. Buck JA, Underhill PR, Morelli J, et al. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current. Paper presented AIP Conf Proc, 2017. Atlanta, Georgia, USA. 17–22 July 2016.

        • Gorji M.B.
        • de Pannemaecker A.
        • Spevack S.
        Machine learning predicts fretting and fatigue key mechanical properties.
        Int J Mech Sci. 2022; 215
      8. Haviez L, Toscano R, Fourvy S, et al. Neural network for fretting wear modeling. Paper presented ICAART 2014 - Proc 6th Int Conf Agents Artif Intelligence, 2014. ESEO Angers, Loire Valley, France. 6-8 March 2014.

        • Kolodziejczyk T.
        • Toscano R.
        • Fouvry S.
        • et al.
        Artificial intelligence as efficient technique for ball bearing fretting wear damage prediction.
        Wear. 2010; 268: 309-315
        • Kumar S.A.
        • Raman S.G.S.
        • Narayanan T.S.N.S.
        • et al.
        Prediction of fretting wear behavior of surface mechanical attrition treated Ti-6Al-4V using artificial neural network.
        Mater Des. 2013; 49: 992-999
        • Nowell D.
        • Nowell P.W.
        A machine learning approach to the prediction of fretting fatigue life.
        Tribology Int. 2020; 141
        • Ozarde A.P.
        • Narayan J.
        • Yadav D.
        • et al.
        Optimization of diesel engine's liner geometry to reduce head gasket's fretting damage.
        Sae Int J Engines. 2021; 14: 81-97
        • Qureshi W.
        • Cura F.
        • Mura A.
        Prediction of fretting wear in aero-engine spline couplings made of 42CrMo4.
        Proc Inst Mech Eng C, J Mech Eng Sci. 2017; 231: 4684-4692
        • Sharma M.
        • Bijwe J.
        • Singh K.
        Studies for wear property correlation for carbon fabric-reinforced PES composites.
        Tribology Lett. 2011; 43: 267-273
        • Zhang G.
        • Wang J.
        • Chang S.
        Predicting running-in wear volume with a SVMR-based model under a small amount of training samples.
        Tribology Int. 2018; 128: 349-355
        • Bansal P.
        • Zheng Z.
        • Shao C.
        • et al.
        Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints.
        Reliability Eng Syst Saf. 2022; 227
        • Kamrunnahar M.
        • Urquidi-Macdonald M.
        Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool.
        Corrosion Sci. 2011; 53: 961-967
        • Trasatti S.P.
        • Mazza F.
        Crevice corrosion: A neural network approach.
        Br Corrosion J. 1996; 31: 105-112
        • Agrawal R.
        • Mukhopadhyay A.
        The use of machine learning and metaheuristic algorithm for wear performance optimization of AISI 1040 steel and investigation of corrosion resistance.
        Proc Inst Mech Eng J-Journal Eng Tribology. 2022;
        • Ahuja S.K.
        • Shukla M.K.
        • Ravulakollu K.K.
        Optimized deep learning framework for detecting pitting corrosion based on image segmentation.
        Int J Performability Eng. 2021; 17: 627-637
        • Ampazis N.
        • Alexopoulos N.D.
        Prediction of aircraft aluminum alloys tensile mechanical properties degradation using Support Vector Machines.
        Lecture Notes Computer Sci (including subseries Lecture Notes Artif Intelligence Lecture Notes Bioinformatics). 2010; 6040: 9-18
        • Ben Seghier M.E.A.
        • Keshtegar B.
        • Taleb-Berrouane M.
        • et al.
        Advanced intelligence frameworks for predicting maximum pitting corrosion depth in oil and gas pipelines.
        Process Saf Environ Prot. 2021; 147: 818-833
        • Boucherit M.N.
        • Arbaoui F.
        Pitting corrosion prediction from cathodic data: application of machine learning.
        Anti-Corrosion Methods Mater. 2021; 68: 396-403
        • Boucherit M.N.
        • Amzert S.A.
        • Arbaoui F.
        • et al.
        Modelling input data interactions for the optimization of artificial neural networks used in the prediction of pitting corrosion.
        Anti-corrosion Methods Mater. 2019; 66: 369-378
        • Boukhari Y.
        • Boucherit M.N.
        • Zaabat M.
        • et al.
        Optimization of learning algorithms in the prediction of pitting corrosion.
        J Eng Sci Technology. 2018; 13: 1153-1164
        • Boukhari Y.
        • Boucherit M.N.
        • Zaabat M.
        • et al.
        Artificial intelligence to predict inhibition performance of pitting corrosion.
        J Fundam Appl Sci. 2017; 9: 308-322
        • Chou J.-S.
        • Ngoc-Tri N.
        • Chong W.K.
        The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate.
        Eng Appl Artif Intelligence. 2017; 65: 471-483
      9. Enikeev M, Enikeeva L, Maleeva M, et al. Machine learning in the problem of recognition of pitting corrosion on aluminum surfaces. Paper presented at: CEUR Workshop Proceedings. 2018. International Conference on "Information Technology and Nanotechnology" (ITNT-2018), Samara, Russia, April 24, 2018 - April 27, 2018

        • Hoang N.D.
        Image processing-based pitting corrosion detection using metaheuristic optimized multilevel image thresholding and machine-learning approaches.
        Math Probl Eng. 2020; 2020
        • Ji J.
        • Zhang C.
        • Kodikara J.
        • et al.
        Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine.
        Eng Fail Anal. 2015; 55: 131-138
        • Jesus Jimenez-Come M.
        • de la Luz Martin M.
        • Matres V.
        A support vector machine-based ensemble algorithm for pitting corrosion modeling of EN 1.4404 stainless steel in sodium chloride solutions.
        Mater Corrosion-Werkstoffe Und Korrosion. 2019; 70: 19-27
        • Kankar P.K.
        • Sharma S.C.
        • Harsha S.P.
        Fault diagnosis of ball bearings using machine learning methods.
        Expert Syst Appl. 2011; 38: 1876-1886
        • Kubisztal J.
        • Kubisztal M.
        • Haneczok G.
        Corrosion damage of 316L steel surface examined using statistical methods and artificial neural network.
        Mater Corrosion-Werkstoffe Und Korrosion. 2020; 71: 1842-1855
        • Li Q.
        • Wang J.
        • Wang K.
        • et al.
        Determination of Corrosion Types from Electrochemical Noise by Gradient Boosting Decision Tree Method.
        Int J Electrochem Sci. 2019; 14: 1516-1528
        • Li X.
        • Kong X.
        • Liu Z.
        • et al.
        A Novel Framework for Early Pitting Fault Diagnosis of Rotating Machinery Based on Dilated CNN Combined With Spatial Dropout.
        Ieee Access. 2021; 9: 29243-29252
        • Liu K.C.
        • Yang C.H.
        • Liu T.I.
        • et al.
        On-stream inspection for pitting corrosion defect of pressure vessels for intelligent and safe manufacturing.
        Int J Adv Manufacturing Technology. 2017; 91: 1957-1966
        • Lu H.
        • Peng H.
        • Xu Z.-D.
        • et al.
        A Feature Selection-Based Intelligent Framework for Predicting Maximum Depth of Corroded Pipeline Defects.
        J Perform Constructed Facil. 2022; 36
        • Pidaparti R.M.
        • Neblett E.J.
        Neural network mapping of corrosion induced chemical elements degradation in aircraft aluminum.
        Cmc-Computers Mater Continua. 2007; 5: 1-9
        • Pinto G.
        • Amaral J.
        • Pinheiro G.R.V.
        • et al.
        Non-intrusive Internal Corrosion Characterization using the Potential Drop Technique for Electrical Mapping and Machine Learning.
        J Control Automation Electr Syst. 2022; 33: 183-197
        • Qu Z.
        • Tang D.
        • Wang Z.
        • et al.
        Pitting Judgment Model Based on Machine Learning and Feature Optimization Methods.
        Front Mater. 2021; 8
        • Roy N.
        • Bhardwaj A.
        • Kujur A.
        • et al.
        Effect of heterogeneities on pitting potential of line pipe steels: An adaptive neuro-fuzzy approach.
        Corrosion Sci. 2018; 133: 327-335
        • Sanchez G.
        • Aperador W.
        • Ceron A.
        Corrosion grade classification: a machine learning approach.
        Indian Chem Engineer. 2020; 62: 277-286
        • Shin M.-K.
        • Jo W.J.
        • Cha H.M.
        • et al.
        A study on the condition based maintenance evaluation system of smart plant device using convolutional neural network.
        J Mech Sci Technology. 2020; 34: 2507-2514
        • Takara Y.
        • Ozawa T.
        • Yamaguchi M.
        Analysis of the elemental effects on the surface potential of aluminum alloy using machine learning.
        Jpn J Appl Phys. 2022; 61
        • Urda D.
        • Marcos Luque R.
        • Jesus Jimenez M.
        • et al.
        A Constructive Neural Network to Predict Pitting Corrosion Status of Stainless Steel. Paper presented at: 12th International Work-Conference on Artificial Neural Networks.
        IWANN. 2013; (Puerto de la Cruz, SPAIN): 12-14
        • Wei X.
        • Wen Z.Y.
        • Xiao L.
        • et al.
        Shear strength prediction of TCSWs with artificial pitting based on ANN. Paper presented at: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations - Proceedings of the 10th International Conference on Bridge Maintenance, Safety and Management.
        IABMAS. 2020; 2021
        • Yajima A.
        • Wang H.
        • Liang R.Y.
        • et al.
        A clustering based method to evaluate soil corrosivity for pipeline external integrity management.
        Int J Press Vessels Pip. 2015; 126: 37-47
        • Zhang Y.
        • Zhou X.
        • Shi H.
        • et al.
        Corrosion pitting damage detection of rolling bearings using data mining techniques.
        IJMIC. 2015; 24: 235-243