Advertisement
Review Article| Volume 54, ISSUE 2, P227-236, April 2023

Download started.

Ok

Advances in Cartilage Repair

Published:January 31, 2023DOI:https://doi.org/10.1016/j.ocl.2022.11.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Orthopedic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barbier O.
        • Amouyel T.
        • de l'Escalopier N.
        • et al.
        Osteochondral lesion of the talus: what are we talking about?.
        Orthop Traumatol Surg Res. 2021; 107: 103068
        • O'Loughlin P.F.
        • Heyworth B.E.
        • Kennedy J.G.
        Current concepts in the diagnosis and treatment of osteochondral lesions of the ankle.
        Am J Sports Med. 2010; 38: 392-404
        • Hamilton C.
        • Burgul R.
        • Kourkounis G.
        • et al.
        Osteochondral defects of the talus: radiological appearance and surgical candidate profiling - A retrospective analysis.
        Foot (Edinb). 2021; 46: 101767
        • Looze C.A.
        • Capo J.
        • Ryan M.K.
        • et al.
        Evaluation and management of osteochondral lesions of the talus.
        Cartilage. 2017; 8: 19-30
        • Shimozono Y.
        • Coale M.
        • Yasui Y.
        • et al.
        Subchondral bone degradation after microfracture for osteochondral lesions of the talus: an MRI analysis.
        Am J Sports Med. 2018; 46: 642-648
        • Lan T.
        • McCarthy H.S.
        • Hulme C.H.
        • et al.
        The management of talar osteochondral lesions - current concepts.
        J Arthrosc Jt Surg. 2021; 8: 231-237
        • Kawasaki K.
        • Ochi M.
        • Uchio Y.
        • et al.
        Hyaluronic acid enhances proliferation and chondroitin sulfate synthesis in cultured chondrocytes embedded in collagen gels.
        J Cell Physiol. 1999; 179: 142-148
        • Ramponi L.
        • Yasui Y.
        • Murawski C.D.
        • et al.
        Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review.
        Am J Sports Med. 2017; 45: 1698-1705
        • Park J.H.
        • Park K.H.
        • Cho J.Y.
        • et al.
        Bone marrow stimulation for osteochondral lesions of the talus: are clinical outcomes maintained 10 years later?.
        Am J Sports Med. 2021; 49: 1220-1226
        • Murawski C.D.
        • Foo L.F.
        • Kennedy J.G.
        A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern.
        Cartilage. 2010; 1: 137-144
        • Steadman J.R.
        • Rodkey W.G.
        • Rodrigo J.J.
        Microfracture: surgical technique and rehabilitation to treat chondral defects.
        Clin Orthop Relat Res. 2001; : S362-S369https://doi.org/10.1097/00003086-200110001-00033
        • Smyth N.A.
        • Murawski C.D.
        • Adams Jr., S.B.
        • et al.
        Osteochondral allograft: proceedings of the international consensus meeting on cartilage repair of the ankle.
        Foot Ankle Int. 2018; 39: 35s-40s
        • Rikken Q.G.H.
        • Dahmen J.
        • Reilingh M.L.
        • et al.
        Outcomes of bone marrow stimulation for secondary osteochondral lesions of the talus equal outcomes for primary lesions.
        Cartilage. 2021; 13: 1429s-1437s
        • Hannon C.P.
        • Ross K.A.
        • Murawski C.D.
        • et al.
        Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes.
        Arthroscopy. 2016; 32: 339-347
        • Shapiro F.
        • Koide S.
        • Glimcher M.J.
        Cell origin and differentiation in the repair of full-thickness defects of articular cartilage.
        J Bone Joint Surg Am. 1993; 75: 532-553
        • Lee K.B.
        • Bai L.B.
        • Yoon T.R.
        • et al.
        Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus.
        Am J Sports Med. 2009; 37: 63s-70s
        • Becher C.
        • Driessen A.
        • Hess T.
        • et al.
        Microfracture for chondral defects of the talus: maintenance of early results at midterm follow-up.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 656-663
        • Madry H.
        • van Dijk C.N.
        • Mueller-Gerbl M.
        The basic science of the subchondral bone.
        Knee Surg Sports Traumatol Arthrosc. 2010; 18: 419-433
        • Chen H.
        • Sun J.
        • Hoemann C.D.
        • et al.
        Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair.
        J Orthopaedic Res. 2009; 27: 1432-1438
        • Orth P.
        • Goebel L.
        • Wolfram U.
        • et al.
        Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months.
        Am J Sports Med. 2012; 40: 828-836
        • Seow D.
        • Yasui Y.
        • Hutchinson I.D.
        • et al.
        The subchondral bone is affected by bone marrow stimulation: a systematic review of preclinical animal studies.
        Cartilage. 2019; 10: 70-81
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • et al.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Engl J Med. 1994; 331: 889-895
        • Kwak S.K.
        • Kern B.S.
        • Ferkel R.D.
        • et al.
        Autologous chondrocyte implantation of the ankle: 2- to 10-year results.
        Am J Sports Med. 2014; 42: 2156-2164
        • Giannini S.
        • Buda R.
        • Ruffilli A.
        • et al.
        Arthroscopic autologous chondrocyte implantation in the ankle joint.
        Knee Surg Sports Traumatol Arthrosc. 2014; 22: 1311-1319
        • Lenz C.G.
        • Tan S.
        • Carey A.L.
        • et al.
        Matrix-induced autologous chondrocyte implantation (MACI) grafting for osteochondral lesions of the talus.
        Foot Ankle Int. 2020; 41: 1099-1105
        • Giza E.
        • Sullivan M.
        • Ocel D.
        • et al.
        Matrix-induced autologous chondrocyte implantation of talus articular defects.
        Foot Ankle Int. 2010; 31: 747-753
        • Lee Y.H.
        • Suzer F.
        • Thermann H.
        Autologous matrix-induced chondrogenesis in the knee: a review.
        Cartilage. 2014; 5: 145-153
        • Weigelt L.
        • Hartmann R.
        • Pfirrmann C.
        • et al.
        Autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: a clinical and radiological 2- to 8-year follow-up study.
        Am J Sports Med. 2019; 47: 1679-1686
        • Giannini S.
        • Buda R.
        • Battaglia M.
        • et al.
        One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction.
        Am J Sports Med. 2013; 41: 511-518
        • Giannini S.
        • Buda R.
        • Cavallo M.
        • et al.
        Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation.
        Injury. 2010; 41: 1196-1203
        • Riff A.J.
        • Davey A.
        • Cole B.J.
        Emerging technologies in cartilage restoration.
        in: Yanke A.B. Cole B.J. Joint preservation of the knee: a clinical casebook. Springer International Publishing, Cham (Switzerland)2019: 295-319
        • Fortier L.A.
        • Chapman H.S.
        • Pownder S.L.
        • et al.
        BioCartilage improves cartilage repair compared with microfracture alone in an equine model of full-thickness cartilage loss.
        Am J Sports Med. 2016; 44: 2366-2374
        • Shimozono Y.
        • Williamson E.R.C.
        • Mercer N.P.
        • et al.
        Use of extracellular matrix cartilage allograft may improve infill of the defects in bone marrow stimulation for osteochondral lesions of the talus.
        Arthroscopy. 2021; 37: 2262-2269
        • Shimozono Y.
        • Hurley E.T.
        • Nguyen J.T.
        • et al.
        Allograft compared with autograft in osteochondral transplantation for the treatment of osteochondral lesions of the talus.
        J Bone Joint Surg Am. 2018; 100: 1838-1844
        • Migliorini F.
        • Maffulli N.
        • Baroncini A.
        • et al.
        Allograft versus autograft osteochondral transplant for chondral defects of the talus: systematic review and meta-analysis.
        Am J Sports Med. 2022; 50: 3447-3455
        • Kennedy J.G.
        • Murawski C.D.
        The treatment of osteochondral lesions of the talus with autologous osteochondral transplantation and bone marrow aspirate concentrate: surgical technique.
        Cartilage. 2011; 2: 327-336
        • Nguyen A.
        • Ramasamy A.
        • Walsh M.
        • et al.
        Autologous osteochondral transplantation for large osteochondral lesions of the talus is a viable option in an athletic population.
        Am J Sports Med. 2019; 47: 3429-3435
        • Everts P.
        • Onishi K.
        • Jayaram P.
        • et al.
        Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020.
        Int J Mol Sci. 2020; 21https://doi.org/10.3390/ijms21207794
        • Danilkowicz R.M.
        • Grimm N.L.
        • Zhang G.X.
        • et al.
        Impact of early weightbearing after ankle arthroscopy and bone marrow stimulation for osteochondral lesions of the talus.
        Orthop J Sports Med. 2021; 9 (23259671211029883)
        • Görmeli G.
        • Karakaplan M.
        • Görmeli C.A.
        • et al.
        Clinical effects of platelet-rich plasma and hyaluronic acid as an additional therapy for talar osteochondral lesions treated with microfracture surgery: a prospective randomized clinical trial.
        Foot Ankle Int. 2015; 36: 891-900
        • Guney A.
        • Akar M.
        • Karaman I.
        • et al.
        Clinical outcomes of platelet rich plasma (PRP) as an adjunct to microfracture surgery in osteochondral lesions of the talus.
        Knee Surg Sports Traumatol Arthrosc. 2015; 23: 2384-2389
        • Seow D.
        • Ubillus H.A.
        • Azam M.T.
        • et al.
        Limited evidence of adjuvant biologics with bone marrow stimulation for the treatment of osteochondral lesion of the talus: a systematic review.
        Knee Surg Sports Traumatol Arthrosc. 2022; https://doi.org/10.1007/s00167-022-07130-z
        • Boakye L.A.
        • Ross K.A.
        • Pinski J.M.
        • et al.
        Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model.
        World J Orthop. 2015; 6: 961-969
        • Smyth N.A.
        • Haleem A.M.
        • Murawski C.D.
        • et al.
        The effect of platelet-rich plasma on autologous osteochondral transplantation: an in vivo rabbit model.
        J Bone Joint Surg Am. 2013; 95: 2185-2193
        • Russell R.P.
        • Apostolakos J.
        • Hirose T.
        • et al.
        Variability of platelet-rich plasma preparations.
        Sports Med Arthrosc Rev. 2013; 21: 186-190
        • Caplan A.I.
        Mesenchymal stem cells.
        J Orthop Res. 1991; 9: 641-650
        • Fortier L.A.
        • Strauss E.J.
        • Shepard D.O.
        • et al.
        Biological effects of bone marrow concentrate in knee pathologies.
        J Knee Surg. 2019; 32: 2-8
        • Barry F.
        • Boynton R.E.
        • Liu B.
        • et al.
        Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components.
        Exp Cell Res. 2001; 268: 189-200
        • Fortier L.A.
        • Potter H.G.
        • Rickey E.J.
        • et al.
        Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model.
        J Bone Joint Surg Am. 2010; 92: 1927-1937
        • Wilke M.M.
        • Nydam D.V.
        • Nixon A.J.
        Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model.
        J Orthop Res. 2007; 25: 913-925
        • Murphy E.P.
        • McGoldrick N.P.
        • Curtin M.
        • et al.
        A prospective evaluation of bone marrow aspirate concentrate and microfracture in the treatment of osteochondral lesions of the talus.
        Foot Ankle Surg. 2019; 25: 441-448
        • Mercer N.P.
        • Samsonov A.P.
        • Dankert J.F.
        • et al.
        Outcomes of autologous osteochondral transplantation with and without extracellular matrix cartilage allograft augmentation for osteochondral lesions of the talus.
        Am J Sports Med. 2022; 50: 162-169
        • Shimozono Y.
        • Yasui Y.
        • Hurley E.T.
        • et al.
        Concentrated bone marrow aspirate may decrease postoperative cyst occurrence rate in autologous osteochondral transplantation for osteochondral lesions of the talus.
        Arthroscopy. 2019; 35: 99-105
        • Doral M.N.
        • Bilge O.
        • Batmaz G.
        • et al.
        Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1398-1403
        • Kaplan L.D.
        • Lu Y.
        • Snitzer J.
        • et al.
        The effect of early hyaluronic acid delivery on the development of an acute articular cartilage lesion in a sheep model.
        Am J Sports Med. 2009; 37: 2323-2327
        • Bajuri M.Y.
        • Sabri S.
        • Mazli N.
        • et al.
        Osteochondral injury of the talus treated with cell-free hyaluronic acid-based scaffold (Hyalofast®) - a reliable solution.
        Cureus. 2021; 13: e17928
        • Tahta M.
        • Akkaya M.
        • Gursoy S.
        • et al.
        Arthroscopic treatment of osteochondral lesions of the talus: Nanofracture versus hyaluronic acid-based cell-free scaffold with concentration of autologous bone marrow aspirate.
        J Orthop Surg (Hong Kong). 2017; 25 (2309499017717870)
        • Yontar N.S.
        • Aslan L.
        • Can A.
        • et al.
        One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination.
        Acta Orthop Traumatol Turc. 2019; 53: 372-375
        • Colasanti C.A.
        • Mercer N.P.
        • Garcia J.V.
        • et al.
        In-office needle arthroscopy for the treatment of anterior ankle impingement yields high patient satisfaction with high rates of return to work and sport.
        Arthroscopy. 2022; 38: 1302-1311