Advertisement
Review Article| Volume 54, ISSUE 2, P237-246, April 2023

Download started.

Ok

Technological Advances in Spine Surgery

Navigation, Robotics, and Augmented Reality

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Orthopedic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goldberg J.L.
        • Kirnaz S.
        • Carnevale J.A.
        • et al.
        History of navigation guided spine surgery.
        in: 1st edition. Technical advances in minimally invasive spine surgery. vol. 1. Springer Nature, Singapore2022: 3-10
        • Nerland U.S.
        • Jakola A.S.
        • Solheim O.
        • et al.
        Minimally invasive decompression versus open laminectomy for central stenosis of the lumbar spine: pragmatic comparative effectiveness study.
        BMJ. 2015; 350: h1603
        • Imada A.
        • Huynh T.R.
        • Drazin D.
        Minimally invasive versus open laminectomy/discectomy, transforaminal lumbar, and posterior lumbar interbody fusions: a systematic review.
        Cureus. 2017; 9https://doi.org/10.7759/cureus.1488
        • Good C.R.
        • Orosz L.
        • Schroerlucke S.R.
        • et al.
        Complications and revision rates in minimally invasive robotic-guided versus fluoroscopic-guided spinal fusions: the mis refresh prospective comparative study.
        Spine (Phila Pa 1976). 2021; 46: 1661-1668
        • Tian N.F.
        • Wu Y.S.
        • Zhang X.L.
        • et al.
        Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence.
        Eur Spine J. 2013; 22: 1741-1749
        • Rawicki N.
        • Dowdell J.E.
        • Sandhu H.S.
        Current state of navigation in spine surgery.
        Ann Transl Med. 2021; 9https://doi.org/10.21037/atm-20-1335
        • Hussain I.
        • Navarro-Ramirez R.
        • Lang G.
        • et al.
        3D Navigation-guided resection of giant ventral cervical intradural schwannoma with 360-degree stabilization.
        Clin Spine Surg. 2018; 31: E257-E265
        • Navarro-Ramirez R.
        • Lang G.
        • Lian X.
        • et al.
        Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative computed tomography 3-dimensional navigation system.
        World Neurosurg. 2017; 100: 325-335
        • Janssen I.
        • Lang G.
        • Navarro-Ramirez R.
        • et al.
        Can fan-beam interactive computed tomography accurately predict indirect decompression in minimally invasive spine surgery fusion procedures?.
        World Neurosurg. 2017; 107: 322-333
        • Kim C.W.
        • Lee Y.P.
        • Taylor W.
        • et al.
        Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery.
        Spine J. 2008; 8: 584-590
        • Kraus M.D.
        • Krischak G.
        • Keppler P.
        • et al.
        Can computer-assisted surgery reduce the effective dose for spinal fusion and sacroiliac screw insertion?.
        Clin Orthopaedics Relat Res. 2010; 468: 2419-2429
        • Buza J.A.
        • Good C.R.
        • Lehman R.A.
        • et al.
        Robotic-assisted cortical bone trajectory (CBT) screws using the Mazor X Stealth Edition (MXSE) system: workflow and technical tips for safe and efficient use.
        J Robotic Surg. 2021; 15: 13-23
        • Fan Y.
        • Du J.
        • Zhang J.
        • et al.
        Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery.
        Med Sci Monitor. 2017; 23: 5960-5968
        • Bhatt F.R.
        • Orosz L.D.
        • Tewari A.
        • et al.
        Augmented reality-assisted spine surgery: an early experience demonstrating safety and accuracy with 218 screws.
        Glob Spine J. 2022; 0: 1-6
        • Garg S.
        • Kleck C.J.
        • Gum J.L.
        • et al.
        Navigation options for spinal surgeons: state of the art 2021.
        Instr Course Lect. 2022; 71: 399-411
        • Kalfas I.H.
        Machine vision navigation in spine surgery.
        Front Surg. 2021; 8https://doi.org/10.3389/fsurg.2021.640554
        • Gebhard F.
        • Kraus M.
        • Schneider E.
        • et al.
        Radiation dosage in orthopedics -- a comparison of computer-assisted procedures.
        Unfallchirurg. 2003; 106: 492-497
        • Gebhard F.
        • Weidner A.
        • Liener U.C.
        • et al.
        Navigation at the spine.
        Injury. 2004; 35: 35-45
        • Gebhard F.T.
        • Kraus M.D.
        • Schneider E.
        • et al.
        Does Computer-Assisted Spine Surgery Reduce Intraoperative Radiation Doses?.
        Spine (Phila Pa 1976). 2006; 31: 2024-2027
        • Smith H.
        • Welsch M.
        • Ugurlu H.
        • et al.
        Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging.
        J Spinal Cord Med. 2008; 31: 532-537
        • Nelson E.M.
        • Monazzam S.M.
        • Kim K.D.
        • et al.
        Intraoperative fluoroscopy, portable X-ray, and CT: patient and operating room personnel radiation exposure in spinal surgery.
        Spine J. 2014; 14: 2985-2991
        • Theocharopoulos N.
        • Perisinakis K.
        • Damilakis J.
        • et al.
        Occupational Exposure from Common Fluoroscopic Projections Used in Orthopaedic Surgery.
        J Bone Joint Surg. 2003; 85: 1698-1703
        • Jones D.P.G.
        • Robertson P.A.
        • Lunt B.
        • et al.
        Radiation exposure during fluoroscopically assisted pedicle screw insertion in the lumbar spine.
        Spine (Phila Pa 1976). 2000; 25: 1538-1541
        • Nakashima H.
        • Sato K.
        • Ando T.
        • et al.
        Comparison of the percutaneous screw placement precision of isocentric C-arm 3-dimensional fluoroscopy-navigated pedicle screw implantation and conventional fluoroscopy method with minimally invasive surgery.
        J Spinal Disord Tech. 2009; 22: 468-472
        • Merloz P.
        • Troccaz J.
        • Vouaillat H.
        • et al.
        Fluoroscopy-based navigation system in spine surgery.
        Proc Inst Mech Eng H. 2007; 221: 813-820
        • Lee G.Y.F.
        • Massicotte E.M.
        • Raja Rampersaud Y.
        Clinical accuracy of cervicothoracic pedicle screw placement.
        J Spinal Disord Tech. 2007; 20: 25-32
        • Laine T.
        • Lund T.
        • Ylikoski M.
        • et al.
        Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients.
        Eur Spine J. 2000; 9: 235-240
        • Kotani Y.
        • Abumi K.
        • Ito M.
        • et al.
        Accuracy Analysis of Pedicle Screw Placement in Posterior Scoliosis Surgery.
        Spine (Phila Pa 1976). 2007; 32: 1543-1550
        • Kotani Y.
        • Abumi K.
        • Ito M.
        • et al.
        Improved accuracy of computer-assisted cervical pedicle screw insertion.
        J Neurosurg. 2003; 99: 257-263
        • Ito H.
        • Neo M.
        • Yoshida M.
        • et al.
        Efficacy of computer-assisted pedicle screw insertion for cervical instability in RA patients.
        Rheumatol Int. 2007; 27: 567-574
        • Ishikawa Y.
        • Kanemura T.
        • Yoshida G.
        • et al.
        Clinical accuracy of three-dimensional fluoroscopy-based computer-assisted cervical pedicle screw placement: a retrospective comparative study of conventional versus computer-assisted cervical pedicle screw placement.
        J Neurosurg. 2010; 13: 606-611
        • Yu X.
        • Xu L.
        • yan Bi L.
        [Spinal navigation with intra-operative 3D-imaging modality in lumbar pedicle screw fixation].
        Zhonghua Yi Xue Za Zhi. 2008; 88: 1905-1908
        • Yson S.C.
        • Sembrano J.N.
        • Sanders P.C.
        • et al.
        Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation.
        Spine (Phila Pa 1976). 2013; 38: E251-E258
        • Verma S.K.
        • Singh P.K.
        • Agrawal D.
        • et al.
        O-arm with navigation versus C-arm: a review of screw placement over 3 years at a major trauma center.
        Br J Neurosurg. 2016; 30: 658-661
        • van de Kelft E.
        • Costa F.
        • van der Planken D.
        • et al.
        A prospective multicenter registry on the accuracy of pedicle screw placement in the thoracic, lumbar, and sacral levels with the use of the o-arm imaging system and stealthstation navigation.
        Spine (Phila Pa 1976). 2012; 37: E1580-E1587
        • Shin M.H.
        • Ryu K.S.
        • Park C.K.
        Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines : comparison study between conventional c-arm fluoroscopy and navigation coupled with o-arm® guided methods.
        J Korean Neurosurg Soc. 2012; 52: 204
        • Luther N.
        • Iorgulescu J.B.
        • Geannette C.
        • et al.
        Comparison of navigated versus non-navigated pedicle screw placement in 260 patients and 1434 screws.
        J Spinal Disord Tech. 2015; 28: E298-E303
        • Larson A.N.
        • Santos E.R.G.
        • Polly D.W.
        • et al.
        Pediatric pedicle screw placement using intraoperative computed tomography and 3-dimensional image-guided navigation.
        Spine (Phila Pa 1976). 2012; 37: E188-E194
        • Amiot L.P.
        • Lang K.
        • Putzier M.
        • et al.
        Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine.
        Spine (Phila Pa 1976). 2000; 25: 606-614
        • Towner J.E.
        • Li Y.I.
        • Singla A.
        • et al.
        Retrospective review of revision surgery after image-guided instrumented spinal surgery compared with traditional instrumented spinal surgery.
        Clin Spine Surg. 2020; 33: E317-E321
        • Baky F.J.
        • Milbrandt T.
        • Echternacht S.
        • et al.
        Intraoperative Computed Tomography–Guided Navigation for Pediatric Spine Patients Reduced Return to Operating Room for Screw Malposition Compared With Freehand/Fluoroscopic Techniques.
        Spine Deformity. 2019; 7: 577-581
        • Sclafani J.A.
        • Regev G.J.
        • Webb J.
        • et al.
        Use of a quantitative pedicle screw accuracy system to assess new technology: Initial studies on O-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion.
        SAS J. 2011; 5: 57-62
        • Malham G.M.
        • Wells-Quinn T.
        What should my hospital buy next?—Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery.
        J Spine Surg. 2019; 5: 155-165
        • Overley S.C.
        • Cho S.K.
        • Mehta A.I.
        • et al.
        Navigation and robotics in spinal surgery: where are we now?.
        Neurosurgery. 2017; 80: S86-S99
        • Zausinger S.
        • Scheder B.
        • Uhl E.
        • et al.
        Intraoperative computed tomography with integrated navigation system in spinal stabilizations.
        Spine (Phila Pa 1976). 2009; 34: 2919-2926
        • Drazin D.
        • Al-Khouja L.
        • Shweikeh F.
        • et al.
        Economics of image guidance and navigation in spine surgery.
        Surg Neurol Int. 2015; 6: S323-S326
        • Huang M.
        • Tetreault T.A.
        • Vaishnav A.
        • et al.
        The current state of navigation in robotic spine surgery.
        Ann Transl Med. 2021; 9https://doi.org/10.21037/atm-2020-ioi-07
        • D’Souza M.
        • Gendreau J.
        • Feng A.
        • et al.
        Robotic-assisted spine surgery: history, efficacy, cost, and future trends.
        Robotic Surg Res Rev. 2019; 6: 9-23
        • Nathoo N.
        • Çavuşoğlu M.C.
        • Vogelbaum M.A.
        • et al.
        In touch with robotics: neurosurgery for the future.
        Neurosurgery. 2005; 56: 421-433
        • Lee N.J.
        • Zuckerman S.L.
        • Buchanan I.A.
        • et al.
        Is there a difference between navigated and non-navigated robot cohorts in robot-assisted spine surgery? A multicenter, propensity-matched analysis of 2,800 screws and 372 patients.
        Spine J. 2021; 21: 1504-1512
        • Fatima N.
        • Massaad E.
        • Hadzipasic M.
        • et al.
        Safety and accuracy of robot-assisted placement of pedicle screws compared to conventional free-hand technique: a systematic review and meta-analysis.
        Spine J. 2021; 21: 181-192
        • Peng Y.N.
        • Tsai L.C.
        • Hsu H.C.
        • et al.
        Accuracy of robot-assisted versus conventional freehand pedicle screw placement in spine surgery: a systematic review and meta-analysis of randomized controlled trials.
        Ann Translational Med. 2020; 8: 824
        • Lee N.J.
        • Buchanan I.A.
        • Zuckermann S.L.
        • et al.
        What is the comparison in robot time per screw, radiation exposure, robot abandonment, screw accuracy, and clinical outcomes between percutaneous and open robot-assisted short lumbar fusion? a multicenter, propensity-matched analysis of 310 patients.
        Spine (Phila Pa 1976). 2022; 47: 42-48
        • Roser F.
        • Tatagiba M.
        • Maier G.
        Spinal Robotics.
        Neurosurgery. 2013; 72: A12-A18
        • Good C.R.
        • Orosz L.D.
        • Thomson A.E.
        • et al.
        Robotic-guidance allows for accurate S2AI screw placement without complications.
        J Robotic Surg. 2021; 0123456789: 2-7
        • Lee N.J.
        • Leung E.
        • Buchanan I.A.
        • et al.
        A multicenter study of the 5-year trends in robot-assisted spine surgery outcomes and complications.
        J Spine Surg. 2022; 8: 9-20
        • Lee N.J.
        • Buchanan I.A.
        • Boddapati V.
        • et al.
        Do robot-related complications influence 1 year reoperations and other clinical outcomes after robot-assisted lumbar arthrodesis? A multicenter assessment of 320 patients.
        J Orthopaedic Surg Res. 2021; 16https://doi.org/10.1186/s13018-021-02452-z
        • Yu C.C.
        • Carreon L.Y.
        • Glassman S.D.
        • et al.
        Propensity-matched comparison of 90-day complications in robotic-assisted versus non-robotic assisted lumbar fusion.
        Spine (Phila Pa 1976). 2022; 47: 195-200
        • Fiani B.
        • Quadri S.A.
        • Farooqui M.
        • et al.
        Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: A systemic review.
        Neurosurg Rev. 2020; 43: 17-25
        • Gum J.L.
        • Crawford C.H.
        • Djurasovic M.
        • et al.
        Introducing navigation or robotics into TLIF techniques: are we optimizing our index episode of care or just spending more money?.
        Spine J. 2019; 19: S61-S62
        • Menger R.P.
        • Savardekar A.R.
        • Farokhi F.
        • et al.
        A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery.
        Neurospine. 2018; 15: 216-224
        • Urakov T.M.
        • Chang K.H.
        • Burks S.S.
        • et al.
        Initial academic experience and learning curve with robotic spine instrumentation.
        Neurosurg Focus. 2017; 42: E4
        • Kam J.K.T.
        • Gan C.
        • Dimou S.
        • et al.
        Learning curve for robot-assisted percutaneous pedicle screw placement in thoracolumbar surgery.
        Asian Spine J. 2019; 13: 920-927
        • Siddiqui M.I.
        • Wallace D.J.
        • Salazar L.M.
        • et al.
        Robot-assisted pedicle screw placement: learning curve experience.
        World Neurosurg. 2019; 130: e417-e422
        • Hu X.
        • Lieberman I.H.
        What is the learning curve for robotic-assisted pedicle screw placement in spine surgery?.
        Clin Orthopaedics Relat Res. 2014; 472: 1839-1844
        • Liu Y.
        • Lee M.G.
        • Kim J.S.
        Spine surgery assisted by augmented reality: where have we been?.
        Yonsei Med J. 2022; 63: 305-316
        • Felix B.
        • Kalatar S.B.
        • Moatz B.
        • et al.
        Augmented reality spine surgery navigation.
        Spine (Phila Pa 1976). 2022; 47: 865-872
        • Carl B.
        • Bopp M.
        • Saß B.
        • et al.
        Implementation of augmented reality support in spine surgery.
        Eur Spine J. 2019; 28: 1697-1711
        • Elmi-Terander A.
        • Nachabe R.
        • Skulason H.
        • et al.
        Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology.
        Spine (Phila Pa 1976). 2018; 43: 1018-1023
        • Elmi-Terander A.
        • Burström G.
        • Nachabé R.
        • et al.
        Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy.
        Scientific Rep. 2020; 10: 1-8
        • Liu A.
        • Jin Y.
        • Cottrill E.
        • et al.
        Clinical accuracy and initial experience with augmented reality-assisted pedicle screw placement: the first 205 screws.
        J Neurosurg Spine. 2022; 36: 351-357
        • Driver J.
        • Groff M.W.
        Editorial. Navigation in spine surgery: an innovation here to stay.
        J Neurosurg Spine. 2022; 36: 347-349